Local DNA hypomethylation activates genes in rice endosperm.

نویسندگان

  • Assaf Zemach
  • M Yvonne Kim
  • Pedro Silva
  • Jessica A Rodrigues
  • Bradley Dotson
  • Matthew D Brooks
  • Daniel Zilberman
چکیده

Cytosine methylation silences transposable elements in plants, vertebrates, and fungi but also regulates gene expression. Plant methylation is catalyzed by three families of enzymes, each with a preferred sequence context: CG, CHG (H = A, C, or T), and CHH, with CHH methylation targeted by the RNAi pathway. Arabidopsis thaliana endosperm, a placenta-like tissue that nourishes the embryo, is globally hypomethylated in the CG context while retaining high non-CG methylation. Global methylation dynamics in seeds of cereal crops that provide the bulk of human nutrition remain unknown. Here, we show that rice endosperm DNA is hypomethylated in all sequence contexts. Non-CG methylation is reduced evenly across the genome, whereas CG hypomethylation is localized. CHH methylation of small transposable elements is increased in embryos, suggesting that endosperm demethylation enhances transposon silencing. Genes preferentially expressed in endosperm, including those coding for major storage proteins and starch synthesizing enzymes, are frequently hypomethylated in endosperm, indicating that DNA methylation is a crucial regulator of rice endosperm biogenesis. Our data show that genome-wide reshaping of seed DNA methylation is conserved among angiosperms and has a profound effect on gene expression in cereal crops.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Imprinted expression of genes and small RNA is associated with localized hypomethylation of the maternal genome in rice endosperm.

Arabidopsis thaliana endosperm, a transient tissue that nourishes the embryo, exhibits extensive localized DNA demethylation on maternally inherited chromosomes. Demethylation mediates parent-of-origin-specific (imprinted) gene expression but is apparently unnecessary for the extensive accumulation of maternally biased small RNA (sRNA) molecules detected in seeds. Endosperm DNA in the distantly...

متن کامل

Parent-of-origin effects on gene expression and DNA methylation in the maize endosperm.

Imprinting describes the differential expression of alleles based on their parent of origin. Deep sequencing of RNAs from maize (Zea mays) endosperm and embryo tissue 14 d after pollination was used to identify imprinted genes among a set of ~12,000 genes that were expressed and contained sequence polymorphisms between the B73 and Mo17 genotypes. The analysis of parent-of-origin patterns of exp...

متن کامل

DNA demethylation is initiated in the central cells of Arabidopsis and rice.

Cytosine methylation is a DNA modification with important regulatory functions in eukaryotes. In flowering plants, sexual reproduction is accompanied by extensive DNA demethylation, which is required for proper gene expression in the endosperm, a nutritive extraembryonic seed tissue. Endosperm arises from a fusion of a sperm cell carried in the pollen and a female central cell. Endosperm DNA de...

متن کامل

Genomic imprinting, methylation and parent-of-origin effects in reciprocal hybrid endosperm of castor bean

Genomic imprinting often results in parent-of-origin specific differential expression of maternally and paternally inherited alleles. In plants, the triploid endosperm is where gene imprinting occurs most often, but aside from studies on Arabidopsis, little is known about gene imprinting in dicotyledons. In this study, we inspected genomic imprinting in castor bean (Ricinus communis) endosperm,...

متن کامل

Extensive maternal DNA hypomethylation in the endosperm of Zea mays.

A PCR-based genomic scan has been undertaken to estimate the extent and ratio of maternally versus paternally methylated DNA regions in endosperm, embryo, and leaf of Zea mays (maize). Analysis of several inbred lines and their reciprocal crosses identified a large number of conserved, differentially methylated DNA regions (DMRs) that were specific to the endosperm. DMRs were hypomethylated at ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 107 43  شماره 

صفحات  -

تاریخ انتشار 2010